Auto
Auto network generation module form network description. We support hdf5 network description for now. It is intended to load a model and perform fine tuning or use it as a pretrained feature extractor.
- class lava.lib.dl.slayer.auto.SequentialNetwork(network_config, persistent_state=False, reduction=None, weight_norm=False, count_log=False)
Creates sequential network from hdf5 network description.
- Parameters:
network_config (str) – name of network configuration description.
persistent_state (bool) – flag for persistent state. Defaults to False.
reduction (str or None) – Reduction of output spike. Options are ‘sum’ or ‘mean’. None means no reduction. Defaults to None.
weight_norm (bool) – flag to enable weight norm. Defaults to False.
count_log (bool) – flag to enable count statistics. Defaults to False.
- Returns:
network module.
- Return type:
torch module
- average_block(layer_handle)
- dense_block(layer_handle)
- flatten_block(layer_handle)
- forward(spike)
- input_block(layer_handle)
- read_block(layer_handle)
- lava.lib.dl.slayer.auto.get_classes(neuron_type=None)
Maps slayer class from neuron type.
- Parameters:
neuron_type (string) – neuron type description. None means cuba neuron. Defaults to None.
- Returns:
neuron class and block class.
- Return type:
neuron_class, block_class
- lava.lib.dl.slayer.auto.get_neuron_params(neuron_handle, neuron_class)
Gets neuron parameters from the hdf5 description handle.
- Parameters:
neuron_handle (hdf5 handle) – handle to hdf5 object that describes the neuron.
neuron_class (slayer.neuron.*) – neuron class type
- Returns:
dictionary of neuron parameters.
- Return type:
dict